Saturday, 21 January 2017

Tricks with nonstandard angles & HEIGHT n DISTANCE

Heights and Distance



Trigonometric ratios find many uses. Among them is their use in determining HEIGHTS and DISTANCE of any object which has certain ANGLES and the measure of a related length.



Terminology used in this section


1– Angle of Elevation:Let O be the eye of an observer and in the  figure, object A is above the horizontal line O B . Angle θ is called the Angle of Elevation.







2– Angle of Depression: Again, O be the eye of an observer and object A is below the horizontal line O B .Angle θ is called Angle of depression .


Now it is clear from the adjoining figure (3) that the Angle of elevation and Angle of depression
always be equal.



You know the values of standard angles e.g.,0°,30°,45°,60°,90°
What about the values like 40°,74°,35° 24’,42°41’……so n.
Well there are some simple steps to know the values of nonstandard angles.
How to read table for nonstandard angles →



Reading the value of sin 33°  ,Sin 33°18’    ,33°27'.

To locate the value of 33°

Look at the extreme left column . you find the value of 33°0’.value is .5446..    
 So, Sin 33°= .5446  
   
To locate the value of 33°18

First you move to the right in the row of 33° till you reach the column of 18’.
 you find 5490 ,that is .5490. So Sin 33°18’ = 0.5490

 To locate the value of Sin 33°27'

First move to the right in the row of 33 till you reach the column of 24’.
you find 5505, that is .5505. So, Sin 33°27’ = 0.5505 + mean difference  for 3’                 
                                                                       = 0.5505  + 7 = 0.5512 

                

This section illustrate the process of solving problems rel
ated to HEIGHT and DISTANCE in very easy way…






1 A ladder rests against a vertical wall such that the top of the ladder reaches the top of the wall .The ladder is inclined at 60°  with the ground ,and the bottom of the ladder is 1.5 m away from the foot of the wall. FIND (A) the length of the ladder, and  (B) the height of the wall.


        SOLUTION →           First draw a diagram according to question

(A)     A O =length of ladder                      

      A B =height of the wall,   ⇒      B O =1.5 m

       Cos 60° = base / hypotanuse =BO/AO  = 1.5 / AO          A O = 1.5 2 = 3 m
                                                          
(B)   tan 60° = Altitude / base  = AB / BO          √3  = AB / 1.5   AB = √3 1.5
                                                                                 =1.7321.5                                 
                                                                                   =2.6 m               (∵√3 =1.732)


 (2)  - vertical pillar and a tower 120 m high are in the same horizontal plane .from the top of the tower , the angle of depression of the top and the foot of the pillar are 45° and 60°. Find
 (A) The distance between the pillar and the tower.     (B)The height of the pillar .


Solution

                    Draw a diagram according to question 


AB = length of pillar
DC =length of tower 
BD = distance between pillar and tower
     Angle of elevation = angle of depression
 ⊾CBD = 60°  ,   ⊾CAH = 45°
      Tan 60°= Altitude / base   = DC / BD         √ 3 = 120 /BD   
   BD = 120 / √ 3    = 120 / 1.732       = 69.16 m              (∵ √3 = 1.732 )

Again
   tan 45°= Altitude / base = CH / AH              1 = DC - HD / BD               ( ∵AH = BD )
   1 = 120 - HD /69.16             69.16 = 120 –HD
   HD = 120 – 69.16 = 50.84 m
  AB = HD = 50.84 m


NOTE: For any queries or suggestion please post a comment :) !


******************

No comments:

Post a Comment

Featured post

Why you should never Mock-Up Trigonometric Table!

There is no need to learn   TRIGONOMETRIC TABLE   Just look how to prepare a TRIGONOMETRIC table Number 0 1 2 3 4 Angle 0...