Saturday, 18 February 2017

Comprehensive list of basic MATH formulas ..!!!


ALGEBRIC IDENTITIES :
 (a+b+c)²= a²+b²+c²+2(ab+bc+ca)

1. (a+b)²= a²+2ab+b²
2. (a+b)²= (a-b)²+4ab
3. (a-b)²= a²-2ab+b²
4. (a-b)²= f(a+b)²-4ab
5. a² + b²= (a+b)² - 2ab.
6. a² + b²= (a-b)² + 2ab.
7. a²-b² =(a + b)(a - b)
8. 2(a² + b²) = (a+ b)² + (a - b)²
9. 4ab = (a + b)² -(a-b)²
10. ab ={(a+b)/2}²-{(a-b)/2}²
11. (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
12. (a + b)³ = a³ + 3a²b + 3ab² + b³
13. (a + b)³ = a³ + b³ + 3ab(a + b)
14. (a-b)³=a³-3a²b+3ab²-b³
15. a³ + b³ = (a + b)(a² -ab + b²)
16. a³ + b³ = (a+ b)³ -3ab(a+ b)
17. a³ -b³ = (a -b)(a² + ab + b²)
18. a³ -b³ = (a-b)³ + 3ab(a-b)
Trigonometric Identities :
Sin0° =0
Sin30° = 1/2
Sin45° = 1/√2
Sin60° = √3/2
Sin90° = 1
Cos is opposite of Sin
tan0° = 0
tan30° = 1/√3
tan45° = 1
tan60° = √3
tan90° = ∞
Cot is opposite of tan
Sec0° = 1
Sec30° = 2/√3
Sec45° = √2
Sec60° = 2
Sec90° = ∞
Cosec is opposite of Sec
2(Sin a)(Cos b)=Sin(a+b)+Sin(a-b)
2(Cos a)(sin b)=Sin(a+b)-Sin(a-b)
2(Cos a)(Cos b)=Cos(a+b)+Cos(a-b)
2(Sin a)(sin b)=Cos(a-b)-Cos(a+b)
Sin(a+b)=(Sin a)(Cos b)+(Cos a)(sin b).
» Cos(a+b)=(Cos a)(Cos b) - (Sin a)(sin b).
» Sin(a-b)=(Sin a)(Cos b)-(Cos a)(sin b).
» Cos(a-b)=(Cos a)(Cos b)+(Sin a)(sin b).
» tan(a+b)= ((tan a) + (tan b))/ (1−(tan a)(tan b))
» tan(a−b)= ((tan a) − (tan b)) / (1+ (tan a)(tan b))
» Cot(a+b)= ((Cot a)(Cot b) −1) / ((Cot a) + (Cot b))
» Cot(a−b)= ((Cot a)(Cot b) + 1) / ((Cot b)− (Cot a))
» Sin(a+b)=(Sin a)(Cos b)+ (Cos a)(sin b).
» Cos(a+b)=(Cos a)(Cos b) +(Sin a)(sin b).
» Sin(a-b)=(Sin a)(Cos b)-(Cos a)(sin b).
» Cos(a-b)=(Cos a)(Cos b)+(Sin a)(sin b).
» tan(a+b)= ((tan a) + (tan b))/ (1−(tan a)(tan b))
» tan(a−b)= ((tan a) − (tan b)) / (1+ (tan a)(tan b))
» Cot(a+b)= ((Cot a)(Cot b) −1) / ((Cot a) + (Cot b))
» Cot(a−b)= ((Cot a)(Cot b) + 1) / ((Cot b) − (Cot a))
a/(Sin a) = b/(sin b) = c/Sinc = 2r
» a = b Cosc + c (Cos b)
» b = a Cosc + c (Cos a)
» c = a (Cos b) + b (Cos a)
» (Cos a) = (b² + c²− a²) / 2bc
» (Cos b) = (c² + a²− b²) / 2ca
» Cosc = (a² + b²− c²) / 2ca
» Δ = abc/4r
» SinΘ = 0 then,Θ = nΠ
» SinΘ = 1 then,Θ = (4n + 1)Π/2
» SinΘ =−1 then,Θ = (4n− 1)Π/2
» SinΘ = (Sin a) then,Θ = nΠ (−1)^na

1. Sin2a = 2(Sin a)(Cos a)
2. Cos2a = Cos²a − Sin²a
3. Cos2a = 2Cos²a − 1
4. Cos2a = 1 − 2Sin²a
5. 2Sin²a = 1 − Cos2a
6. 1 + Sin2a = ((Sin a) + (Cos a))²
7. 1 − Sin2a = ((Sin a) − (Cos a))²
8. tan2a = 2(tan a) / (1 − tan²a)
9. Sin2a = 2(tan a) / (1 + tan²a)
10. Cos2a = (1 − tan²a) / (1 + tan²a)
11. 4Sin³a = 3(Sin a) − Sin3a
12. 4Cos³a = 3(Cos a) + Cos3a

» Sin²Θ+Cos²Θ=1
» Sec²Θ-tan²Θ=1
» Cosec²Θ-Cot²Θ=1
» SinΘ=1/CosecΘ
» CosecΘ=1/SinΘ
» CosΘ=1/SecΘ
» SecΘ=1/CosΘ
» tanΘ=1/CotΘ 
» CotΘ=1/tanΘ
» tanΘ=SinΘ/CosΘ
Formulas of three dimensional solids :(Mensuration)
For a cuboid :  
1 - Volume (V) = l × b × h
2 - Total surface area = 2 (lb × bh × hl )
3 - Diagonal = √ l²× b²×h²
For a cube :
1 - Volume (V) = a³
2 - Total surface area = 6a²
3 - Diagonal = √3 a
For a solid right circular cylinder:
1- Volume (V) = π r²h
2 - Lateral surface area = 2 π r h
3 - Total surface area = 2πr (h + r)
For a hollow right circular cylinder :



1 - Thickness of the material = (R - r)
2 - Volume of the material = π(R² - r²)h
3 - External curved surface area = 2πRh
4 - Internal curved surface area = 2πrh
5 - Total surface area = {2π(R + r) h + 2π(R² - r²)
For a right circular cone:




1 - Slant height = √h²+r²
2 - Volume (V) = 1/3 πr²h
3 - Lateral surface area = πrl
4 - Total surface area = πrl + πr²
For a sphere :
1 - Volume (V) = 4/3 πr³
2 - Surface area = 4πr²
For a spherical shell :
1 - Thickness of the material = ( R - r)
2 - Volume of the material = 4/3 π (R³- r³)
3 - Exterior surface area = 4πR²
4 - Interior surface area = 4πr²
For a hemisphere :
1 - Volume (V) = 2/3πr³
2 - Curved surface area = 2πr²
3 - Total surface area = 3πr²
Distance Formula :
1 - The distance between two points (xₗ , yₗ ) and (x₂ , y₂)
= √(xₗ - x₂)² + (yₗ - y₂)²
= √(difference of x - coordinates )² + ( difference of y - coordinates)²
Middle point of a line segment :
The middle point of a line segment joining the points (xₗ , yₗ ) and (x₂ , y₂ ) has the coordinates
(xₗ +x₂ /2) ,( yₗ + y₂/2)
Section Formula :

If AB is divided at P(x , y) in the ratio m : n , then the coordinates of P are
x = mx₂ + nxₗ / m + n    ,   y = my₂ + nyₗ /m + n
Formulas of equation of straight line :
Equation  of a straight line in the straight intercept  form :
1 - tan𝛉 = mx + c    , where m is slope, which cut off intercept c on the y axis.
2 - The equation of a line passing through (x₁ , y₁ ) and having the slope m is y - y₁ = m(x - x₁)
3 - The equation of the straight line passing through (x₁ , y₁) and (x₂ , y₂ ) is y - y₁ = y₁ - y₂/x₁ - x₂ (x - x₁)

No comments:

Post a Comment

Featured post

Why you should never Mock-Up Trigonometric Table!

There is no need to learn   TRIGONOMETRIC TABLE   Just look how to prepare a TRIGONOMETRIC table Number 0 1 2 3 4 Angle 0...