ALGEBRIC IDENTITIES :
(a+b+c)²=
a²+b²+c²+2(ab+bc+ca)
1.
(a+b)²= a²+2ab+b²
2.
(a+b)²= (a-b)²+4ab
3.
(a-b)²= a²-2ab+b²
4.
(a-b)²= f(a+b)²-4ab
5. a² +
b²= (a+b)² - 2ab.
6. a² +
b²= (a-b)² + 2ab.
7. a²-b²
=(a + b)(a - b)
8. 2(a² +
b²) = (a+ b)² + (a - b)²
9. 4ab =
(a + b)² -(a-b)²
10. ab
={(a+b)/2}²-{(a-b)/2}²
11. (a +
b + c)² = a² + b² + c² + 2(ab + bc + ca)
12. (a +
b)³ = a³ + 3a²b + 3ab² + b³
13. (a +
b)³ = a³ + b³ + 3ab(a + b)
14.
(a-b)³=a³-3a²b+3ab²-b³
15. a³ +
b³ = (a + b)(a² -ab + b²)
16. a³ +
b³ = (a+ b)³ -3ab(a+ b)
17. a³
-b³ = (a -b)(a² + ab + b²)
18. a³
-b³ = (a-b)³ + 3ab(a-b)
Trigonometric Identities :
Sin0° =0
Sin30° =
1/2
Sin45° =
1/√2
Sin60° =
√3/2
Sin90° =
1
Cos is
opposite of Sin
tan0° = 0
tan30° =
1/√3
tan45° =
1
tan60° =
√3
tan90° =
∞
Cot is
opposite of tan
Sec0° = 1
Sec30° =
2/√3
Sec45° =
√2
Sec60° =
2
Sec90° =
∞
Cosec is
opposite of Sec
2(Sin a)(Cos
b)=Sin(a+b)+Sin(a-b)
2(Cos a)(sin
b)=Sin(a+b)-Sin(a-b)
2(Cos a)(Cos
b)=Cos(a+b)+Cos(a-b)
2(Sin a)(sin
b)=Cos(a-b)-Cos(a+b)
Sin(a+b)=(Sin
a)(Cos b)+(Cos a)(sin b).
»
Cos(a+b)=(Cos a)(Cos b) - (Sin a)(sin b).
»
Sin(a-b)=(Sin a)(Cos b)-(Cos a)(sin b).
»
Cos(a-b)=(Cos a)(Cos b)+(Sin a)(sin b).
»
tan(a+b)= ((tan a) + (tan b))/ (1−(tan a)(tan b))
»
tan(a−b)= ((tan a) − (tan b)) / (1+ (tan a)(tan b))
»
Cot(a+b)= ((Cot a)(Cot b) −1) / ((Cot a) + (Cot b))
»
Cot(a−b)= ((Cot a)(Cot b) + 1) / ((Cot b)− (Cot a))
»
Sin(a+b)=(Sin a)(Cos b)+ (Cos a)(sin b).
»
Cos(a+b)=(Cos a)(Cos b) +(Sin a)(sin b).
»
Sin(a-b)=(Sin a)(Cos b)-(Cos a)(sin b).
»
Cos(a-b)=(Cos a)(Cos b)+(Sin a)(sin b).
»
tan(a+b)= ((tan a) + (tan b))/ (1−(tan a)(tan b))
»
tan(a−b)= ((tan a) − (tan b)) / (1+ (tan a)(tan b))
»
Cot(a+b)= ((Cot a)(Cot b) −1) / ((Cot a) + (Cot b))
»
Cot(a−b)= ((Cot a)(Cot b) + 1) / ((Cot b) − (Cot a))
a/(Sin a)
= b/(sin b) = c/Sinc = 2r
» a = b
Cosc + c (Cos b)
» b = a
Cosc + c (Cos a)
» c = a (Cos
b) + b (Cos a)
» (Cos a)
= (b² + c²− a²) / 2bc
» (Cos b)
= (c² + a²− b²) / 2ca
» Cosc =
(a² + b²− c²) / 2ca
» Δ =
abc/4r
» SinΘ =
0 then,Θ = nΠ
» SinΘ =
1 then,Θ = (4n + 1)Π/2
» SinΘ
=−1 then,Θ = (4n− 1)Π/2
» SinΘ = (Sin
a) then,Θ = nΠ (−1)^na
1. Sin2a
= 2(Sin a)(Cos a)
2. Cos2a
= Cos²a − Sin²a
3. Cos2a
= 2Cos²a − 1
4. Cos2a
= 1 − 2Sin²a
5. 2Sin²a
= 1 − Cos2a
6. 1 +
Sin2a = ((Sin a) + (Cos a))²
7. 1 −
Sin2a = ((Sin a) − (Cos a))²
8. tan2a
= 2(tan a) / (1 − tan²a)
9. Sin2a
= 2(tan a) / (1 + tan²a)
10. Cos2a
= (1 − tan²a) / (1 + tan²a)
11.
4Sin³a = 3(Sin a) − Sin3a
12.
4Cos³a = 3(Cos a) + Cos3a
»
Sin²Θ+Cos²Θ=1
»
Sec²Θ-tan²Θ=1
» Cosec²Θ-Cot²Θ=1
»
SinΘ=1/CosecΘ
» CosecΘ=1/SinΘ
»
CosΘ=1/SecΘ
»
SecΘ=1/CosΘ
»
tanΘ=1/CotΘ
»
CotΘ=1/tanΘ
»
tanΘ=SinΘ/CosΘ
Formulas of three dimensional
solids :(Mensuration)
For a cuboid :
1 -
Volume (V) = l × b × h
2 - Total
surface area = 2 (lb × bh × hl )
3 -
Diagonal = √ l²× b²×h²
For a cube :
1 -
Volume (V) = a³
2 - Total
surface area = 6a²
3 -
Diagonal = √3 a
For a solid right circular cylinder:
1- Volume
(V) = π r²h
2 -
Lateral surface area = 2 π r h
3 - Total
surface area = 2πr (h + r)
For a hollow right circular cylinder :
1 -
Thickness of the material = (R - r)
2 -
Volume of the material = π(R² - r²)h
3 -
External curved surface area = 2πRh
4 -
Internal curved surface area = 2πrh
5 - Total
surface area = {2π(R + r) h + 2π(R² - r²)
For a right circular cone:
1 - Slant
height = √h²+r²
2 -
Volume (V) = 1/3 πr²h
3 -
Lateral surface area = πrl
4 - Total
surface area = πrl + πr²
For a sphere :
1 -
Volume (V) = 4/3 πr³
2 -
Surface area = 4πr²
For a
spherical shell :
1 -
Thickness of the material = ( R - r)
2 -
Volume of the material = 4/3 π (R³- r³)
3 -
Exterior surface area = 4πR²
4 -
Interior surface area = 4πr²
For a
hemisphere :
1 -
Volume (V) = 2/3πr³
2 -
Curved surface area = 2πr²
3 - Total surface area = 3πr²
Distance Formula :
1 - The distance between two points (xₗ , yₗ ) and (x₂ , y₂)
= √(xₗ - x₂)² + (yₗ - y₂)²
= √(difference of x - coordinates )² + ( difference of y -
coordinates)²
Middle point of a line segment :
The middle point of a line segment joining the points (xₗ , yₗ ) and (x₂
, y₂ ) has the coordinates
(xₗ +x₂ /2) ,( yₗ + y₂/2)
Section Formula :
If AB is divided at P(x , y) in the ratio m : n , then the coordinates
of P are
x = mx₂ + nxₗ / m + n , y = my₂ + nyₗ
/m + n
Formulas of equation
of straight line :
Equation of a straight line in
the straight intercept form :
1 - tan𝛉 = mx + c , where m
is slope, which cut off intercept c on the y axis.
2 - The equation of a line passing through (x₁ , y₁ ) and having the
slope m is y - y₁ = m(x - x₁)
3 - The equation of the straight line passing through (x₁ , y₁) and (x₂
, y₂ ) is y - y₁ = y₁ - y₂/x₁ - x₂ (x - x₁)